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Abstract—The stereoselective and convergent synthesis of the C12-C28 segment 2 of the apoptosis inducing macrolide antibiotic,
apoptolidin (1), is described. The synthesis involves a highly stereoselective tin(II)-mediated aldol reaction between the C17-C22

ethyl ketone 3 and the C23-C28 aldehyde 4 as the key step.
© 2004 Elsevier Ltd. All rights reserved.

Apoptolidin (1), discovered in 1997 by Seto and co-
workers,! possesses impressive biological properties.
Thus, 1 induces apoptotic cell death in rat glia cells
transformed with the adenovirus E1A oncogene, but
not in normal glia cells. Recently, Khosla and co-work-
ers identified the mitochondrial FoF;—ATPase as one
possible target to explain this biological action.? In a re-
cent test of 37,000 compounds against the National
Cancer Institute’s 60 human cancer cell line panel, 1
was found to be among the top 0.1% of the most selec-
tive cytotoxic agents.? The relative and absolute config-
uration of 1 has been established by extensive NMR
analysis and degradation studies.* Apoptolidin (1) pos-
sesses a novel molecular structure, which consists of a
complex aglycon and two sugar units, and is distin-
guished by a total of 25 stereocenters and five geometri-
cal sites. The aglycon is constructed of a 20-membered
macrocyclic lactone containing independent conjugated
triene and diene systems and a side chain at C19 con-
taining a six-membered cyclic hemiacetal. A B-p-ole-
androsyl-a-L-olivomycose disaccharide is located at
C27, while a novel sugar, 6-deoxy-4-O-methyl-a-L-glu-
cose is attached at C9. Because of its important biolog-
ical activity and novel molecular architecture,
apoptolidin (1) has been deemed a prime target for total
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synthesis. In this context, besides our own studies,” ele-
gant synthetic studies on 1 have been announced by
Nicolaou and co-workers,° Koert and co-workers,” Suli-
kowski et al.,®® Fuchs and co-workers,” Loh and co-
workers,'® and Paquette and Taylar!' groups, and two
total syntheses of apoptolidin have been reported by
Nicolaou and co-workers®® ¢ and Koert and co-work-
ers.”* In addition, Wender and co-workers'? and
Sulikowski and co-workers®® groups reported semisyn-
thetic studies on analogs of 1. Herein we now disclose
the stereoselective and convergent synthesis of the
C12-C28 fragment 2 of 1 via a highly stercoselective
aldol reaction, which makes use of the key synthetic
intermediates, the C17-C22 segment 3 and the C23-
C28 segment 4 (Fig. 1).

The synthesis of the ethyl ketone 3 corresponding to the
C17-C22 segment of 1 is summarized in Scheme 1. The
olefin 6 was readily obtained from dimethyl L-tartrate
(5) using the procedures reported by Kibayashi and
co-workers'? and Chen and Marx.!'* Hydroboration of
6 employing dicyclohexylborane smoothly proceeded
to afford the primary alcohol 7 in 85% yield after the
subsequent oxidative work-up. Protection of 7 with ben-
zyl group, followed by deprotection of the TBS group,
gave the alcohol 9 via 8 in 94% overall yield. Dess—Mar-
tin oxidation'’ of 9 and subsequent Grignard reaction of
the resulting aldehyde 10 using EtMgCl yielded the sec-
ondary alcohol 11 in 60% overall yield. Finally, 11 was
oxidized using Dess—Martin periodinane to give the de-
sired ethyl ketone 3 in 75% yield.
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Figure 1. Molecular structure of apoptolidin (1) and retrosynthesis of the C12-C28 portion.
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Scheme 1. Reagents and conditions: (a) Refs. 13,14; (b) (¢-Hex),BH, THF, 25°C, 1h then H,0,, 25°C, 1h, 85%; (c) BnBr, NaH, DMF, 25°C, 1h; (d)
TBAF, THF, 0°C, 3h, 94% from 7; (¢) Dess—Martin periodinane, Py, CH,Cl,, 25°C, 18h; (f) EtMgCl, THF, 25°C, 0.5h, 60% from 9; (g) Dess—

Martin periodinane, Py, CH,Cl,, 25°C, 3h, 75%.

The construction of the aldehyde 4 corresponding to the
C23-C28 segment of 1 is depicted in Scheme 2. The p-
methoxybenzylidene acetal 13 prepared from p-malic
acid (12) using the methods by Hanessian et al.'® and
Herraddn et al.!” was chosen as the starting material.
After methylation of the primary alcohol in 13, DIBAL
reduction of the resulting 14 proceeded selectively
(>10:1 regioselectivity) to give the secondary alcohol
15% in 87% overall yield. Protection of the secondary
alcohol of 15 with TBS group, followed by deprotection
of the p-methoxybenzyl group utilizing DDQ,!® fur-
nished the primary alcohol 17 via 16 in 92% overall
yield. Swern oxidation of 17 gave the aldehyde 18, which
was subjected to Evans aldol reaction using the oxazo-
lidinone 19'° in the presence of n-Bu,BOTf and Et;N
in CH,Cl, at 0°C to selectively give the desired aldol
20 in 93% overall yield (>95:5 diastereoselectivity). Con-
version of 20 into the Weinreb amide 21,?° followed by
protection with p-methoxybenzyl group, afforded 22 in
45% overall yield. Finally, DIBAL reduction of 22 at
—78°C furnished the desired aldehyde 4 in 60% yield.

With both key intermediates 3 and 4 in hand, the synthe-
sis of the C12-C28 segment 2 via an aldol reaction was
addressed as shown in Scheme 3. In the aldol reaction
using 3 and 4, we expected that if the Z-enolate of 3
was selectively formed and reacted with the aldehyde 4
via a six-membered transition state as depicted in Figure
2, the desired anti Felkin aldol adduct could be predomi-
nantly obtained due to the steric effect, namely, the
gauche—gauche pentane interaction.?! Based on this
mechanistic consideration, we examined many aldol
reactions of 3 and 4 using LDA, LIHMDS, n-Bu,BOTT,
PhBCl,, TiCly, and Sn(OTf),, with or without a base
such as Et;N or DIPEA under several conditions.??
Among them, we finally found that the aldol reaction
of 2.0equiv of 3 and 1.0equiv of 4 using 2.6equiv of
Sn(OTf), in the presence of 3.0equiv of DIPEA? in
CH,Cl, at —78 to 0°C for 4 h effectively and stereoselecti-
vely proceeded to give the desired aldol 23 in 80% yield
with very high stereoselectivity (80:8:5:0 diastereoselecti-
vity). Deprotection of the p-methoxybenzyl group along
with the TBS group using DDQ in MeOH-CH,Cl, led to
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Scheme 2. Reagents and conditions: (a) Refs. 16,17; (b) Mel, NaH, DMF, 25°C, 2h, 94%; (c) DIBAL, PhMe, —78°C, 6h, 93% (>10:1); (d) TBSCI,
imidazole, CH,Cl,, 35°C, 18h; (¢) DDQ, CH,Cl,-H,0, 25°C, 2h, 92% from 15; (f) (COCl),, DMSO, Et;N, CH,Cl,, —78°C, 20 min; (g) n-Bu,BOTT,
Et;N, CH,Cl,, 0°C, 2h, 93% (>95:5) form 18; (h) MeONHMeHCI, AlMes3, CH,Cl,, 25°C, 16h, 93%; (i) MPMOC(=NH)CCI;, CSA, CH,Cl,, 35°C,

48h, 48%; (j) DIBAL, PhMe, —78°C, 2h, 60%.
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Scheme 3. Reagents and conditions: (a) Sn(OTf),, DIPEA, —78 to 0°C, 4h, 80% (80:8:5:0); (b) DDQ, MeOH, CH,Cl,, 25°C, 24h, 74%; (c) Ac,0,
Py, 0°C, 1 h, 85%; (d) TBSOTT, Py, 0°C, 1.5h, 91%; (e) H,, Pd-C, EtOH, 25°C, 2h, 89%; (f) Dess—Martin periodinane, Py, CH,Cl,, 25°C, 5h, 81%;
(g) MgBr,OEt,, CH,Cl,, —20°C, 12h, 86% (89:11); (h) MeOTf, 2,6-DTBP, 60°C, 18h, 74%; (i) (c-Hex),BH, THF, 0°C, 2h then H,0,, 25°C, 1h,
84%; (j) TsCl, EtsN, TMEDA, MeCN, 0°C, 1h, 99%; (k) LiC + CH, DMSO, 25°C, 12h, 55%; (1) Mel, n-BuLi, THF, 25°C, 1.5h, 96%; (m)

Cp,ZrHCl, THF, 25°C, 1.5h then NIS, —25°C, 0.5h, 53%.

the acetal formation to give 24 in 74% yield. At this
stage, we first confirmed the configurations of the newly
generated stereocenters at C22 and C23 by the aldol
reaction. Thus, 24 was acetylated to produce the diace-
tate 25, in which NOEs were observed between the

C23 and C25 protons and between the C23 proton
and C22 methyl group as indicated in Figure 3. These re-
sults clearly indicated that the configurations at C22 and
C23 possessed the desired stereochemistry. For the syn-
thesis of 2, the diol 24 was protected with TBS groups to
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give 26 whose benzyl group was removed by hydrogeno-
lysis to afford the primary alcohol 27 in 81% overall
yield. From the alcohol 27 to 2, we successfully applied
our previously developed procedure® to elongate the
C12-C16 portion. Thus, Dess—Martin oxidation of 27
yielded the aldehyde 28 in 81% yield. Addition of the
allylstannane 29°* to 28 in the presence of MgBr,-OEt,
proceeded with stereoselectivity consistent with B-chela-
tion control to give a 89:11 mixture of the desired alco-
hol 30 and the diastereomer in 97% combined yield.
Methylation of 30 using MeOTTf and 2,6-di-tert-butylpy-
ridine (2,6-DTBP) furnished 31 whose terminal olefin
underwent hydroboration employing dicyclohexylbo-
rane, followed by oxidation to provide the primary alco-
hol 32 in 62% overall yield. Tosylation of the alcohol 32
yielded the tosylate 33, which was subjected to a reac-
tion with lithium acetylide in DMSO, to give the acetyl-
ene 34 in 54% overall yield. After methylation of the
terminal alkyne in 34 using Mel and »#-BuLi, the result-
ing 35 was treated with Cp,ZrHCIl and N-iodosucci-
nimide (NIS)* in THF to afford the tri-substituted
trans vinyl iodide 2 in 51% overall yield as the sole iso-
lated product.

In conclusion, we have demonstrated the stereoselective
and convergent synthesis of the suitably functionalized
and protected C12—C28 segment of apoptolidin contain-
ing a total of 10 stereocenters and one geometrical site
via a highly stereoselective tin(II)-mediated aldol
reaction.?®
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